Policy Training#
Run the following command to train WB-VIMA policies.
python3 main/train/train.py data_dir=<HDF5_PATH> \
bs=<BS> \
arch=wbvima \
task=<TASK_NAME> \
exp_root_dir=<EXP_ROOT_DIR> \
gpus=<NUM_GPUS> \
use_wandb=<USE_WANDB> \
wandb_project=<WANDB_PROJECT>
We explain the arguments below.
data_dir: The path to the merged hdf5 file containing the training data.bs: Batch size.arch: The architecture to use. It must exist in thearchbehavior-robot-suite/brs-algo folder. Now we usewbvima.task: The task name. It must exist in thetaskbehavior-robot-suite/brs-algo folder. Select one fromclean_house_after_a_wild_party,clean_the_toilet,take_trash_outside,put_items_onto_shelves, andlay_clothes_out.exp_root_dir: The directory to save the experiment results, including curves and model checkpoints.gpus: The number of GPUs to use. Refer to the PyTorch Lightning documents for how to set it.use_wandb: Whether to use Wandb for logging. Set it toTrueif you want to use it.wandb_project: The Wandb project name. If Wandb is not used, set it tonull.
For more parameters, refer to the training config file behavior-robot-suite/brs-algo. We follow the Hydra CLI syntax.