Policy Training#
Run the following command to train WB-VIMA policies.
python3 main/train/train.py data_dir=<HDF5_PATH> \
bs=<BS> \
arch=wbvima \
task=<TASK_NAME> \
exp_root_dir=<EXP_ROOT_DIR> \
gpus=<NUM_GPUS> \
use_wandb=<USE_WANDB> \
wandb_project=<WANDB_PROJECT>
We explain the arguments below.
data_dir
: The path to the merged hdf5 file containing the training data.bs
: Batch size.arch
: The architecture to use. It must exist in thearch
behavior-robot-suite/brs-algo folder. Now we usewbvima
.task
: The task name. It must exist in thetask
behavior-robot-suite/brs-algo folder. Select one fromclean_house_after_a_wild_party
,clean_the_toilet
,take_trash_outside
,put_items_onto_shelves
, andlay_clothes_out
.exp_root_dir
: The directory to save the experiment results, including curves and model checkpoints.gpus
: The number of GPUs to use. Refer to the PyTorch Lightning documents for how to set it.use_wandb
: Whether to use Wandb for logging. Set it toTrue
if you want to use it.wandb_project
: The Wandb project name. If Wandb is not used, set it tonull
.
For more parameters, refer to the training config file behavior-robot-suite/brs-algo. We follow the Hydra CLI syntax.